Lectures on the Arthur-Selberg Trace Formula

Lectures on the Arthur-Selberg Trace Formula

EnglishPaperback / softback
Gelbart Stephen S.
American Mathematical Society
EAN: 9780821805718
Unavailable at the publisher, title sold out
Unknown delivery date
CZK 657
Common price CZK 730
Discount 10%
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as 'weighted' orbital and 'weighted' characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula.This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. It discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. It brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. It explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). It outlines Jacquet's trace formula and shows how it works for $GL$(2).
EAN 9780821805718
ISBN 0821805711
Binding Paperback / softback
Publisher American Mathematical Society
Publication date August 30, 1996
Pages 99
Language English
Dimensions 253 x 177 x 7
Country United States
Readership Professional & Scholarly
Authors Gelbart Stephen S.
Series University Lecture Series