Perfect Lattices in Euclidean Spaces

Perfect Lattices in Euclidean Spaces

EnglishHardback
Martinet Jacques
Springer, Berlin
EAN: 9783540442363
On order
Delivery on Friday, 14. of February 2025
CZK 3,949
Common price CZK 4,388
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Praha Korunní
not available
Librairie Francophone Praha Štěpánská
not available
Oxford Bookshop Ostrava
not available
Oxford Bookshop Olomouc
not available
Oxford Bookshop Plzeň
not available
Oxford Bookshop Brno
not available
Oxford Bookshop Hradec Králové
not available
Oxford Bookshop České Budějovice
not available
Oxford Bookshop Liberec
not available

Detailed information

Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3.

This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property.

Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290.

Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.

EAN 9783540442363
ISBN 3540442367
Binding Hardback
Publisher Springer, Berlin
Publication date December 10, 2002
Pages 526
Language English
Dimensions 234 x 156
Country Germany
Authors Martinet Jacques
Illustrations XXII, 526 p.
Series Grundlehren der mathematischen Wissenschaften